Notice

Notice Board

MECHANICAL ENGINEERING DEPARTMENT WISHES YOU ALL A VERY HAPPY INDEPENDENCE DAY

Thursday, March 10, 2016

rac lect notes

RAC LECT NOTES
The objectives of this lesson are to:
1. Define refrigeration and air conditioning
2. Introduce aspects of various natural refrigeration methods, namely:
a. Use of ice transported from colder regions
b. Use of ice harvested in winter and stored in ice houses
c. Use of ice produced by nocturnal cooling
d. Use of evaporative cooling
e. Cooling by salt solutions
Introduce historical aspects of various artificial refrigeration methods, namely:
a. Vapour compression refrigeration systems, including
i. Domestic refrigeration systems
ii. Air conditioning systems
b. Vapour absorption refrigeration systems
c. Solar energy based refrigeration systems
d. Air cycle refrigeration systems
e. Steam and vapor jet refrigeration systems
f. Thermoelectric refrigeration systems
g. Vortex tubes

Introduction
Refrigeration may be defined as the process of achieving and maintaining a temperature below that of the surroundings, the aim being to cool some product or space to the required temperature. One of the most important applications of refrigeration has been the preservation of perishable food products by storing them at low temperatures. Refrigeration systems are also used extensively for providing thermal comfort to human beings by means of air conditioning. Air Conditioning refers to the treatment of air so as to simultaneously control its temperature, moisture content, cleanliness, odour and circulation, as required by occupants, a process, or products in the space. The subject of refrigeration and air conditioning has evolved out of human need for food and comfort, and its history dates back to centuries. The history of refrigeration is very interesting since every aspect of it, the availability of refrigerants, the prime movers and the developments in compressors and the methods of refrigeration all are a part of it. The French scientist Roger ThÝvenot has written an excellent book on the history of refrigeration throughout the world. Here we present only abrief history of the subject with special mention of the pioneers in the field and some important events.
Natural Refrigeration
In olden days refrigeration was achieved by natural means such as the use of ice or evaporative cooling. In earlier times, ice was either:
1. Transported from colder regions,
2. Harvested in winter and stored in ice houses for summer use or,
3. Made during night by cooling of water by radiation to stratosphere
In Europe, America and Iran a number of icehouses were built to store ice. Materials like sawdust or wood shavings were used as insulating materials in these icehouses. Later on, cork was used as insulating material. Literature reveals that ice has always been available to aristocracy who could afford it. In India, the Mogul emperors were very fond of ice during the harsh summer in Delhi and Agra, and it appears that the ice used to be made by nocturnal cooling
Evaporative Cooling
As the name indicates, evaporative cooling is the process of reducing the temperature of a system by evaporation of water. Human beings perspire and dissipate their metabolic heat by evaporative cooling if the ambient temperature is more than skin temperature. Animals such as the hippopotamus and buffalo coat themselves with mud for evaporative cooling. Evaporative cooling has been used in India for centuries to obtain cold water in summer by storing the water in earthen pots. The water permeates through the pores of earthen vessel to its outer surface where it evaporates to the surrounding, absorbing its latent heat in part from the vessel, which cools the water. It is said that Patliputra University situated on the bank of river Ganges used to induce the evaporative-cooled air from the river. Suitably located chimneys in the rooms augmented the upward flow of warm air, which was replaced by cool air. Evaporative cooling by placing wet straw mats on the windows is also very common in India. The straw mat made from “khus” adds its inherent perfume also to the air. Now-a-days desert coolers are being used in hot and dry areas to provide cooling in summer
Artificial Refrigeration
Refrigeration as it is known these days is produced by artificial means. Though it is very difficult to make a clear demarcation between natural and artificial refrigeration, it is generally agreed that the history of artificial refrigeration began in the year 1755, when the Scottish professor William Cullen made the first refrigerating machine, which could produce a small quantity of ice in the laboratory. Based on the working principle, refrigeration systems can be classified as vapour compression systems, vapour absorption systems, gas cycle systems etc.
Vapour Compression Refrigeration Systems:
The basis of modern refrigeration is the ability of liquids to absorb enormous quantities of heat as they boil and evaporate. Professor William Cullen of the University of Edinburgh demonstrated this in 1755 by placing some water in thermal contact with ether under a receiver of a vacuum pump. The evaporation rate of ether increased due to the vacuum pump and water could be frozen. This process involves two thermodynamic concepts, the vapour pressure and the latent heat. A liquid is in thermal equilibrium with its own vapor at a pressure called the saturation pressure, which depends on the temperature alone. If the pressure is increased for example in a pressure cooker, the water boils at higher temperature. The second concept is that the evaporation of liquid requires latent heat during evaporation. If latent heat is extracted from the liquid, the liquid gets cooled. The temperature of ether will remain constant as long as the vacuum pump maintains a pressure equal to saturation pressure at the desired temperature. This requires the removal of all the vapors formed due to vaporization. If a lower temperature is desired, then a lower saturation pressure will have to be maintained by the vacuum pump. The component of the modern day refrigeration system where cooling is produced by this method is called evaporator.If this process of cooling is to be made continuous the vapors have to be recycled by condensation to the liquid state. The condensation process requires heat rejection to the surroundings. It can be condensed at atmospheric temperature by increasing its pressure. The process of condensation was learned in the second half of eighteenth century. U.F. Clouet and G. Monge liquefied SO2 in 1780 while van Marum and Van Troostwijk liquefied NH3 in 1787. Hence, a compressor is required to maintain a high pressure so that the evaporating vapours can condense at a temperature greater than that of the surroundings
applications of refrigeration
1)Cold Treatment of Metals: The dimensions of precision parts and gauge blocks can be stabilized by soaking the product at temperature around – 90oC. The hardness and wear resistance of carburized steel can be increased by this process. Keeping the cutting tool at –100oC for 15 minutes can also increase the life of cutting tool. In deep drawing process the ductility of metal increases at low temperature. Mercury patterns frozen by refrigeration can be used for precision casting.
2)Medical: Blood plasma and antibiotics are manufactured by freeze-drying process where water is made to sublime at low pressure and low temperature. This does not affect the tissues of blood. Centrifuges refrigerated at –10oC, are used in the manufacture of drugs. Localized refrigeration by liquid nitrogen can be used as anesthesia also.
3)Ice Skating Rinks: Due to the advent of artificial refrigeration, sports like ice hockey and skating do not have to depend upon freezing weather. These can be played in indoor stadium where water is frozen into ice on the floor. Refrigerant or brine carrying pipes are embedded below the floor, which cools and freezes the water to ice over the floor.
4)Desalination of Water: In some countries fresh water is scarce and seawater is desalinated to obtain fresh water. Solar energy is used in some cases for desalination. An alternative is to freeze the seawater. The ice thus formed will be relatively free of salt. The ice can be separated and thawed to obtain fresh water.

5)Ice Manufacture: This was the classical application of refrigeration. Ice was manufactured in plants by dipping water containers in chilled brine and it used to take about 36 hours to freeze all the water in cans into ice. The ice thus formed was stored in ice warehouses. Now that small freezers and icemakers are available. Hotels and restaurants make their own ice, in a hygienic manner. Household refrigerators also have the facility to make ice in small quantities. The use of ice warehouses is dwindling because of this reason. Coastal areas still have ice plants where it is used for transport of iced fish.

Thermodynamic relations
There are some general thermodynamic relations, which are useful for determination of several thermodynamic properties from measured data on a few properties. The following relationships are generally used for the evaluation of entropy change. These are called T ds equations. They are obtained by applying first and second laws of thermodynamics
The liquid-vapour phase diagram of pure substance is conveniently shown in temperature-entropy diagram or pressure-enthalpy diagram or p-v diagram. Sometimes, three dimensional p-v-t diagrams are also drawn to show the phase transformation. In most of the refrigeration applications except dry ice manufacture, we encounter liquid and vapour phases only. Thermodynamic properties of various pure substances are available in the form of charts and tables. Thermodynamic property charts such as Temperature-entropy (T-s) charts, pressure-enthalpy (P-h) charts are very useful in evaluating properties of substances and also for representing the thermodynamic processes and cycles. Figures 5.1 and 5.2 show the P-h and T-s diagrams for pure substances.

Refrigeration is defined as “the process of cooling of bodies or fluids to temperatures lower than those available in the surroundings at a particular time and place”. It should be kept in mind that refrigeration is not same as “cooling”, even though both the terms imply a decrease in temperature. In general, cooling is a heat transfer process down a temperature gradient, it can be a natural, spontaneous process or an artificial process. However, refrigeration is not a spontaneous process, as it requires expenditure of exergy (or availability). Thus cooling of a hot cup of coffee is a spontaneous cooling process (not a refrigeration process), while converting a glass of water from room temperature to say, a block of ice, is a refrigeration process (non-spontaneous). “All refrigeration processes involve cooling, but all cooling processes need not involve refrigeration”.

Reversed Carnot cycle employing a gas
Reversed Carnot cycle is an ideal refrigeration cycle for constant temperature external heat source and heat sinks. Figure  shows the schematic of a reversed Carnot refrigeration system using a gas as the working fluid along with the cycle diagram on T-s and P-v coordinates. As shown, the cycle consists of the following four processes:

Process 1-2: Reversible, adiabatic compression in a compressor
Process 2-3: Reversible, isothermal heat rejection in a compressor
Process 3-4: Reversible, adiabatic expansion in a turbine
Process 4-1: Reversible, isothermal heat absorption in a turbine

The heat transferred during isothermal processes 2-3 and 4-1 are given by:


Limitations of Carnot cycle:

Carnot cycle is an idealization and it suffers from several practical limitations. One of the main difficulties with Carnot cycle employing a gas is the difficulty of achieving isothermal heat transfer during processes 2-3 and 4-1. For a gas to have heat transfer isothermally, it is essential to carry out work transfer from or to the system when heat is transferred to the system (process 4-1) or from the system (process 2-3). This is difficult to achieve in practice. In addition, the volumetric refrigeration capacity of the Carnot system is very small leading to large compressor displacement, which gives rise to large frictional effects. All actual processes are irreversible, hence completely reversible cycles are idealizations only.


VAPOUR COMPRESSION CYCLE

The vapour-compression cycle is most commonly used in Residential and Commercial Refrigeration and Air Conditioning systems. The Figure 1 provides a schematic diagram of the components of a typical vapour-compression system. The thermodynamics of the cycle can be analysed on a diagram as shown in Figure 2.



Point 1 to 2: A circulating refrigerant such as Freon enters the compressor as vapour. The vapour is compressed at constant entropy and exits the compressor superheated


Point 2 to 3 to 4: The superheated vapour travels through the condenser which first cools and removes the superheat and then condenses the vapour into a liquid by removing additional heat at constant pressure and temperature.


Point 4 to 5: The liquid refrigerant goes through the expansion valve where its pressure abruptly decreases, causing flash evaporation. This results in a mixture of liquid and vapour at a lower temperature and pressure as shown at point 5.


Point 5 to 1: The cold liquid-vapour mixture then travels through the evaporator coil and is completely vaporized by cooling the warm air (from the space being refrigerated) being blown by a fan across the evaporator coil. The
resulting refrigerant vapor returns to the compressor inlet at point 1 to complete the 


thermodynamic cycle